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This article presents the design and implementation of a novel intrusion detection system, called EchoSensor,

which leverages speakers and microphones in smart home devices to capture human gait patterns for

individual identification. EchoSensor harnesses the speaker to send inaudible acoustic signals (around

20 kHz) and utilizes the microphone to capture the reflected signals. As the reflected signals have unique

variations in the Doppler shift respective to the gaits of different people, EchoSensor is able to profile human

gait patterns from the generated spectrograms. To mine the gait information, we first propose a two-stage

interference cancellation scheme to remove the background noise and environmental interference, followed

by a new method to detect the starting point of walking and estimate the gait cycle time. We then perform

the fine-grained analysis of the spectrograms to extract a series of features. In the end, machine learning

is employed to construct an identifier for individual recognition. We implement the EchoSensor system

and deploy it under different household environments to conduct intrusion detection tasks. Extensive

experimental results have demonstrated that EchoSensor can achieve the averaged Intruder Gait Detection

Rate (IDR) and True Family Member Gait Detection Rate (TFR) of 92.7% and 91.9%, respectively.
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1 INTRODUCTION

Home security systems are essential to a family for the protection of properties and the main-
tenance of household safety from potential break-ins. Different technologies and solutions for
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mining biometric information to implement unsolicited intrusion detection have been proposed [6,
28, 30, 41, 46, 47], mainly relying on surveillance cameras, floor sensors, wearable sensors, and
Wi-Fi devices. By extracting desirable features from captured data (e.g., video from cameras, foot
pressure from floor sensors, stride and velocity reported by wearable sensors, and channel state

information (CSI) from Wi-Fi devices), the unique patterns for an individual can be spotted. Some
solutions have been commercialized in the professional home security systems to conduct the
effective intrusion detection tasks. However, the Parks Associates report [11] shows that only 27%
of the U.S. households have adopted home security systems, for which the most commonly cited
reason is the high cost of such professional systems incurred by the purchase of expensive devices
or service fees. Undoubtedly, many people do not envision the security as a necessary expense and
are still reluctant to invest in home security. Surveillance camera is the most popular home security
solution, in addition to extra cost for purchasing the devices, many serious privacy concerns have
been raised by the community on the private and sensitive video data, whereas a remote attacker
may have the chance to gain access to the video captured by the camera [38] or infer the action of
the victim from the encrypted video stream [17, 18]. The newly appeared Wi-Fi CSI-based human
identification solution is a viable method that probably can cut down the deployment cost to some
extent. However, the uneven distribution of the CSI Fresnel zone and the noise of electromagnetic
signals itself make the obtained Wi-Fi signals unstable [44]. In addition, Wi-Fi CSI-based solutions
keep sending CSI measurement packets, which inevitably occupy Wi-Fi channel resources and im-
pact the performance of nearby Wi-Fi devices [20]. In comparison, a self-installing software-based
system at a negligible expense is highly desired, especially given the proliferation of smart home
devices.

The functional components of appliances in smart homes offer new opportunities to explore
their sensing capabilities for home security, especially in authentication with biometrics. As
a promising type of such components, the audio system equipped with internal speaker and
microphone can be well leveraged to implement new smart home sensing. As an example, voice
assistant systems, equipped with speakers and microphones, have played important roles in smart
homes by detecting voice commands and making timely responses. According to a report [33]
from Google, voice assistant systems are available on more than 400 million devices, including
Google Home, Amazon Echo, Apple HomePod, Aristotle, DingDong, Rokid, Mi AI Speaker,
smartphones, headphones, TVs, smartwatches, and others. The popularity of voice systems
promotes the recent research interest in exploring the potential sensing capabilities of built-in
speakers and microphones, which are “always-on” in these systems, to serve new needs in smart
homes. A critical direction of such an exploration, which has been pervasively attracting research
community’s interest, is to enable the sensing capability of voice assistant devices using acoustic
signals.

Many research efforts have been made to explore the sensing abilities of acoustic signals on
objects, shapes, and environmental dynamics. For example, in [40], Sonar has been developed
to gather information about distant objects such as range, angle, and velocity using sound
propagation. In Internet-of-Things (IoT) applications, the inaudible acoustic signal at 20 kHz
has been utilized to sense human activities. Specifically, in [9, 24], the acoustic signal is used to
estimate human motion and gesture, while in [35], the surface of mobile devices has been sensed
to enable touchscreen functions. Moreover, acoustic signals have also been used to capture mouth
movements in order to combat voice replay attacks [19, 48]. However, all existing solutions require
the device to be close to the body part, making them unsuitable in smart homes for intrusion
detection. Despite some research efforts [8, 25] extending the acoustic sensing capabilities to cover
a larger range of distance, they only apply to coarse-grained detection while relying on the known
environment (i.e., floor plan), failing to meet the requirements of smart home environments.
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To advance the acoustic sensing in IoT applications, we propose EchoSensor, a human authenti-
cation system which uses the built-in speaker and microphone on the ubiquitous audio, voice, or
other devices in smart homes to capture human biometric information (i.e., gait) for the purpose
of intrusion detection. Specifically, EchoSensor controls the speaker to transmit inaudible acoustic
signals around 20 kHz and leverages the microphone to capture the reflected signals. When
the acoustic signal is bounced off from a walking human, variations in the frequency domains
will be observed in the reflected signals, due to the Doppler effect, which may enclose the rich
gait patterns representing the unique information of this person. Although there exist some
solutions to explore the gait-based human identification using acoustic signals, they leverage the
professional devices [15, 42, 50], i.e., Doppler radar or acoustic sensor, which have the powerful
acoustic signal transmitting function and strong signal resolution capability to ensure the capture
of high-quality Doppler effect spectrogram, without mining the fine-grained gait features. Such
solutions cannot be applied to our proposed EchoSensor system, as we only rely on the readily
available audio or voice devices at smart home, rather than purchasing extra professional devices
to implement the individual recognition for the intrusion detection purpose.

The goal of this article is to explore the biometric information of a walking human through
inaudible acoustic sensing, which is used as the basis for the design and implementation of Echo-
Sensor. To achieve this goal, we generate the spectrogram of reflected signals with Doppler shift
and develop signal processing techniques to mitigate interference/noise. With the pure acoustic
signals acquired as a result, clear gait patterns can be mined by EchoSensor for the use of individ-
ual recognition. In particular, we first develop a solution to let EchoSensor be capable of detecting
the starting point of a walking man and identifying his gait cycle time to differentiate between the
independent gaits. With walking steps separated into a set of two-gait samples, the unique and
fine-grained features of an individual, i.e., cepstral coefficient vector, leg contour curve, spectrum
signature, and torso speed and gait cycle time pairs, are extracted via a series of signal processing
techniques. To realize the eventual goal of intrusion detection, all family members of a household
will enroll in EchoSensor, with their gait features extracted and trained through the machine learn-
ing classifier, resulting in a detector for them. Once an individual is sensed, his gait patterns with
fine-grained features are mined by EchoSensor. Then, the detector can automatically classify him
as a family member or an intruder.

Compared to other home security systems based on surveillance cameras [28], floor sensors [30],
wearable sensors [6], or Wi-Fi signals [41, 46, 47], EchoSensor possesses a set of salient features,
including but is not limited to: First, it is a software-based system that can be self-installed in exist-
ing home audio or voice devices, which is hard to be notified and compromised by an unsolicited
intruder. Second, it leverages the speakers and microphones equipped in existing home appliances,
without incurring extra cost. The fine-grained features extracted by EchoSensor are sufficient to
distinguish an individual. Third, it is based on acoustic signals rather than radio frequency signals,
thus relieving the competition for radio spectrum resource in smart homes.

We implement EchoSensor on Huawei p20 with Android 8.1 and a speaker of Bose Soundlink
Revolve. Beyond our proof-of-concept implementation, EchoSensor is also envisioned to work
effectively on many other smart home audio and voice devices, such as Google Home, Amazon
Echo, Apple HomePod, and so on, which are suitable for the home scenario of intrusion detection
because they locate at different places, covering the majority of regions in a house. We have
evaluated the performance of EchoSensor in 10 households involving a total of 24 participants
in terms of intruders and family members detection. Experimental results show that EchoSensor
can achieve the averaged Intruder Gait Detection Rate (IDR) and True Family Member Gait

Detection Rate (TFR) of 92.7% and 91.9%, respectively. The intrusion alarm accuracy can reach
98% and 100%, respectively, with only 5 and 10 detected two-gait samples.
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Our contributions can be summarized as follows:

— To the best of our knowledge, EchoSensor is the first work to demonstrate the feasibility of
moderate-range (5 meters) gait-based user authentication using speakers and microphones
on pervasively existing audio or voice devices in smart homes.

— The new solutions based on the signal processing techniques are developed in EchoSensor
to perform the fine-grained analysis so as to acquire the unique human gait patterns. In
particular, EchoSensor can detect the starting point of a walking human and identify his
gait cycle time to differentiate independent gaits.

— We develop new techniques to identify and extract a series of fine-grained features
from low-quality Doppler signals to represent a person’s walking patterns. With these
features, a machine learning classifier is trained and individual recognition is implemented
automatically.

— Extensive experiments are conducted to verify the performance of EchoSensor. Experimen-
tal results demonstrate that EchoSensor can achieve high accuracy in intrusion detection
in smart homes.

2 RELATED WORK

Acoustic Sensing. Recently, acoustic sensing has attracted considerable interest. Sonar is a promi-
nent exemplary system and has been extensively explored to gather information about distant
objects (e.g., range, angle, or velocity) by using sound propagation [40]. With the proliferation of
IoT devices, some research efforts have focused more on IoT applications, by taking advantage
of the ubiquitous availability of speakers and microphones on audio or voice devices. Promising
results have been presented by leveraging the near-ultrasound signal at around 20 kHz for human
activity recognition. For instance, in [9, 24], acoustic systems are developed to estimate human mo-
tion and gesture by generating tones within 18∼22 kHz from speakers; the reflected signals from
the human body are captured by microphones for analysis. In [35], the VSkin system is proposed
to enable the sensing of touch gestures on other surfaces of a mobile device, out of the touchscreen
area.

Furthermore, some works have proposed to exploit the usage of a smartphone’s speaker and
microphone to capture mouth movements to defend voice replay attacks [19, 48]. In particular,
Zhang et al. [48] analyzed the Doppler shifts of reflected signals caused by articulatory gestures of
users to achieve liveness detection, while Lu et al. [19] further analyzed the uniqueness of Doppler
profiles caused by different users’ mouth movement patterns for the purpose of user authentication.
BreathPrint [4] is proposed to utilize a microphone to capture the breathing patterns of users for
authentication. Although the aforementioned systems can detect human motion like gestures and
mouth movements, they have the limitations that the device must be close to the target body,
making them unsuitable for the general purpose of intrusion authentication in smart homes.

On the other hand, some recent works aim at expanding the applications of acoustic signals by
breaking the distance constraint. For example, in [8], the Sonar sensor equipped on the smartphone
can measure the distance from the smartphone to an object by capturing the elapsed time between
the initial pulse and its reflected pulse. In [25], CovertBand is proposed to track users and differen-
tiate various categories of motions by capturing acoustic reflections from the human body. These
systems demonstrate the possibility of extending the sensing capability of acoustic signals to a
wider range, but they rely on a known environment (i.e., floorplans) and are designed for coarse-
grained motion detection. In addition, [45] is proposed to identify human gait patterns via acoustic
sensing; however, it assumes the ideal environments without considering the interference, noise,
and reflections pervasively existing in the real home environment, making it unsuitable for home
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applications. Hence, the biometric recognition in a large distance range remains an open problem,
especially for serving the smart home intrusion detection purpose. Nevertheless, the aforemen-
tioned solutions demonstrate the possibility of extending the sensing capability of acoustic signals
to a larger distance range.
Gait-based User Identification. Recent works have demonstrated that gait can be utilized as a
biometric signature for person identification or authentication. Traditional methods to quantify
gait features include video-based and sensor-based methods. In [2, 36], the authors used video
cameras to record people walking and extract the gait information. Some other works leverage
various sensors to capture the gaits signature, such as floor sensors [12], rotation sensors [22], and
accelerometer-based sensors [7, 32, 49]. Moreover, Ngo et al. [26] used the largest inertial sensor-
based gait database, to evaluate and compare different sensor-based gait identification approaches.
Pan et al. in [31] deployed a geophone on the floor and identified people passing by from detected
structural vibration. However, all sensor-based methods require people to carry additional devices
on the body or to deploy these sensors in the environment, which are not convenient to use while
incurring additional cost. On the other hand, radio signal-based solutions have been proposed for
gait identification. For example, [51] has developed an mm-wave radar by employing the FMCW as
the transmitted signals and relying on the point clouds to enable multiple people identification via
gait information. Considering the relatively lower sound speed and limited bandwidth, it is not suit-
able for us to employ the FMCW signals for gait identification in the acoustic domain. The reason
is that the adjacent acoustic FMCW chirps should have a large duration to minimize interference
caused by environmental reflection on the acoustic signals. However, a large interval will result in a
low time resolution, thereby limiting the amount of information that can be used. Also, the limited
bandwidth will constrain FMCW signals’ performance. Some works [41, 46, 47] have proposed con-
venient, low-cost, and effortless approaches by leveraging the variation of Wi-Fi CSI to detect gait
patterns. But they still need additional devices to receive the CSI signal. In addition, such a category
of solutions requires continuously sending CSI measurement packets, which inevitably occupies
radio resources and impacts the performance of nearby Wi-Fi devices [20] in smart homes.
Gait-based Human Identification with Acoustic Signals. Some research works have ex-
plored the gait-based human identification through acoustic signals using the professional devices
[1, 15, 42, 50], i.e., acoustic sensor or Doppler radar. For example, [1] built a gait-based identification
system by using the acoustic sensor to capture the footstep sound so that human gait can be identi-
fied. In [13, 42, 50], the gait-based human identification has been implemented by utilizing Doppler
signals, which requires professional devices, such as Doppler radar, with powerful acoustic signal
transmission function and strong signal resolution capability. Hence, these works can directly ac-
quire the high-quality Doppler effect spectrogram without the need for further analysis of the
received signals for human identification. In our proposed application scenarios, these solutions
are not applicable, since we only rely on the ubiquitously available smart home devices, where a
sequence of fine-grained analysis for the received coarse Doppler signals has to be conducted.

3 PRELIMINARIES

We present the preliminary knowledge and necessary background of acoustic sensing and gait-
based user identification.
Acoustic Sensing. The principle of acoustic sensing is to capture the frequency change of a sound
wave in response to a moving object. The phenomenon of frequency change caused by the object
reflection is defined as the Doppler effect or Doppler shift, where the shifted frequency is deter-
mined by the source frequency and the velocity of the moving object, with a proportional increase
with them. In our application, the original source (i.e., speakers) and listener (i.e., microphone) are
stationary, thus in absence of any motion, there is no frequency change. When a user moves in
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Fig. 1. Spectrogram of a moving person.

front of a speaker, it will reflect the sound waves played by the speaker and cause a frequency shift
[27], which can be measured as follows:

fr = ft ·
(
c +v · cosθ

c −v · cosθ

)
, (1)

where fr is the perceived frequency at the microphone, ft is the original frequency from the
speaker, c is the speed of sound in air, v is the velocity of a moving object, and θ is the angle
between the object motion and the beam of ultrasonics.

Figure 1 shows the spectrogram of Doppler shift signals reflected by a walking human toward a
speaker 5 meters away. Notably, the spectrogram in the figure is preprocessed by removing various
types of interference, which will be elaborated in Section 5.3. Due to the Doppler effect, there are
evident energy variations near 20 kHz, which will be used to detect human gaits later.
Parameters of Interest for the Human Gait. The research on human gait targets the qualitative
and quantitative evaluation of various factors that characterize human walking behaviors. The
factor of interest varies according to the field of research. For security purposes, the research
interest mainly concentrates on distinguishing and identifying persons by capturing a series
of general characteristics of their silhouette and the movements at different body segments
while walking [10, 23]. The parameters which most clearly characterize the human gait can
be summarized as follows: (1) Velocity includes the torso and leg speed; (2) Short step length

represents the linear distance between two successive placements of the same foot; (3) Long step

or stride length represents the linear distance between the placements of both feet; (4) Cadence or
rhythm represents the number of steps per time unit; (5) Step width represents the linear distance
between two equivalent points of both feet; (6) Step angle represents the direction of the foot
during the step; (7) Gait phases represent the body posture which may be bending or symmetric.

4 FEASIBILITY STUDY

The limited transmission power and resolution capability of existing home devices will result in
low-quality received Doppler signals. It is thus in doubt whether they are sufficient to identify
the unique human gait patterns. Hence, we conduct the feasibility study of acoustic-based user
identification with low-quality Doppler signals.

4.1 Gait Patterns Detection

It is necessary to explore whether there is a series of noticeable gait patterns in the low-quality
reflected signals of a walking person so as to design the gait-based authentication system. To
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Fig. 2. Detecting gait patterns: frequency changes through acoustic sensing and the ground truth.

capture these patterns, the gait cycle and the constructed gait profile from a person’s walking
activity have to be taken into account by using purely observed acoustic signals. To demonstrate
the feasibility of gait pattern detection, we conducted an experiment to let a person walk in a room
toward a speaker (i.e., Bose soundlink Revolve) from 5 meters away. Connected to a smartphone
(Huawei P20 with Android 8.1) via Bluetooth, the speaker is controlled to emit inaudible signals
at 20 kHz. The Huawei P20, working as a microphone, is placed on the floor and bundled with the
speaker to capture the reflected signals from the moving human body.

The top plot in Figure 2 presents the spectrogram of Doppler shift over time when a person is
walking toward the speaker. The y-axis represents the captured frequency shifts of the reflected
signals, while the x-axis represents time. Note that the acoustic data shown in the figure is pre-
processed to remove various types of interference. To capture the ground truth of gait patterns,
we also let this person carry another smartphone (Galaxy S9 plus with Android 9) in the pocket
of her right leg to collect the accelerometer and gyrometer data. The ground truth of the gait pat-
terns is also shown in Figure 2 (the bottom plot), which represents that the acceleration values on
the right leg change periodically in two steps period. The periodical change in right leg speed is
caused by the alternating movement of the left and right legs. The peaks in top plot of Figure 2 will
alternately be generated by the movement of the left and right legs. To be specific, the first, third,
and fifth peaks are caused by the movement of the right leg. From the two plots, we can see that
these peaks likely reach the maximum (i.e., crest point) when the acceleration value is positively
reduced to 0, while the frequency shift likely reaches the minimum point (i.e., trough point) when
the acceleration value is negatively increased to 0. This experiment clearly demonstrates that the
captured Doppler frequency changes can reflect a person’s gait patterns to a certain extent, and
acoustic sensing is feasible to capture human gait patterns.

4.2 Gait Pattern Distinction among Persons

We continue to verify whether the captured gait patterns are distinguishable among different in-
dividuals. For this purpose, we conducted another experiment by letting two persons walk in turn
from the starting point to the speaker. Figure 3 presents the spectrograms of Doppler shifts of the
two persons. With a visual inspection, it is clear that there are significant differences between the
step shapes, step lengths, and gait velocities of the two subjects. In particular, the upper spectro-
gram in Figure 3(b) showing 7 full peaks means this person walks 7 steps in 4 seconds. The upper
spectrogram in Figure 3(a) showing 6 full peaks means this person walks 6 steps in 4 seconds. Such
visually observed differences, along with other underlying differences, can be exploited to build a
unique gait profile for each person, which will be sufficient to identify an individual.
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Fig. 3. The spectrograms of Doppler shifts from two persons.

5 SYSTEM DESIGN

In this section, we propose our design of EchoSensor, which leverages the built-in speaker and
microphone in smart home audio devices to enable acoustic sensing capabilities. With the speaker
emitting inaudible ultrasonic signals and the microphone receiving reflected signals, fine-grained
analysis of reflected signals is employed to extract the enclosed biometric information for indi-
vidual recognition and intrusion detection. In our design of EchoSensor, a number of technical
challenges were encountered to be addressed, summarized as follows:

First, the reflected acoustic signals are typically more coarse and of lower quality with much
underlying interference and noise, compared to those from professional devices. As most acoustic
signals suffer from fast attenuation, the interference and noise are grossly detrimental to Doppler
shift measurement and may totally destroy the embedded biometric patterns. It is necessary yet
challenging to develop effective interference cancellation or mitigation solutions toward the ac-
quisition of pure acoustic signals so as to mine the accurate biometric information.

Second, as EchoSensor aims to only rely on the reflected signals for human recognition without
the help of additional equipment for signal resolution, it is significant to determine the useful
information that can characterize human walking patterns. Thus, we need to develop solutions to
automatically identify the starting point of a human walking and gait-cycle time from the Doppler
effect signals, which are challenging, especially when the Doppler effects are buried in strong
interference and noise.

Third, to recognize an individual, the effective fine-grained features that can represent an indi-
vidual’s behaviors shall be identified, extracted, and well utilized. However, EchoSensor can only
rely on the Doppler signals to acquire such a set of features, where a series of signal processing
techniques have to be developed to conduct the fine-grained analysis.

5.1 Threat Model

The goal of an attacker is to intrude into the victim’s home without being detected by EchoSensor.
We assume a strong intruder has the ability to transmit an ultrasonic signal, but could not directly
access the EchoSensor system.

No device access. We assume an attacker cannot immediately control or turn off the audio or
voice devices after entering the house. However, he may be aware of the existence of EchoSen-
sor and knows its principle that Doppler gait signal will be captured for intrusion detection. He
could choose any specific action to reduce the possibility of being detected, such as mimicking the
victim’s gait patterns.
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Fig. 4. The workflow of EchoSensor.

No owner interaction. We assume an intruder could not ask the victim to turn off the system.
The EchoSensor is “always-on” when the victims leave their houses. Also, the intruder is assumed
to be present during the victims’ absence. That means the victims will not meet the intruder.

Replay and saturate attack. We assume the intruder has the knowledge for signal processing.
He could process the ultrasonic signal and has the ability to play the ultrasonic signal to EchoSenor
to obfuscate the system. For example, he may be the victims’ friend and record their gait signals
to conduct a replay attack when the victims are not at home. The intruder may also play the high-
energy signal in front of the EchoSensor to conduct the saturate attack.

5.2 System Overview

Figure 4 exhibits the system design of EchoSensor, consisting of five components: Sensing, Signal

Processing, Gait Pattern Mining, Feature Extraction, and Recognition. In the Sensing module, Echo-
Sensor programs the built-in speaker in audio devices to emit inaudible acoustic signals at 20 kHz,
and uses the microphone to collect Doppler effect signals with the sampling frequency of 44.1 kHz.
Such a sampling frequency ensures it is twice higher than the highest Doppler shift frequency, so
the Doppler signal can be entirely reconstructed from the recorded signal [34].

The received signals pass to the Signal Processing module through a high-pass Butterworth filter
[21]. The interference and noise will be canceled or mitigated here so that the expected pure acous-
tic signals can be acquired. To mine the gait patterns, EchoSensor has two sub-modules in the Gait

Pattern Mining module, i.e., walking detection and gait cycle time identification, where the former
one is to determine the starting point of a human walking while the latter determines the gait time
so that each independent gait can be differentiated. After this stage, the human walking steps can
be separated into a set of two-gait samples, which will be sent to the Feature Extraction module. In
this module, we focus on four categories of features for extraction, i.e., cepstral coefficient vector
of each two-gait sample, spectrum signature, ratio curve between the leg speed curve and torso
speed curve, and gait cycle time. In the end, we employ a machine learning classifier to recognize
an individual in the Recognition module. We next illustrate the detailed design of each module.

5.3 Interference Cancellation

After receiving the reflected acoustic signals at the microphone, we generate the spectrogram of
the Doppler shift for analysis. Figure 5 is an example of the spectrogram from reflected signals,
where the short-time Fourier transform (STFT) is employed to process them. During the STFT
process, the original signal is sliced into a set of small bins, with each bin having a 0.3 seconds
duration. The overlapping between each two consecutive bins is set to 95%. We then multiply
each bin with the Hamming window and apply the 8,192 point Fast Fourier transformation

(FFT) on each bin to compose the spectrogram. As the human walking speed is estimated up to a
maximum of 1.5 m/s [37], and the maximum leg speed is up to 5 m/s, the reflected signal will have a
maximum shift of 500Hz, according to Equation (1). Thus, in Figure 5, we only need to consider the
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Fig. 5. Spectrogram of Doppler effect from the gait movement.

spectrogram between 19.5 kHz and 20.5 kHz, sufficiently covering all the Doppler shifts bounced
off from a moving body. We also observe the blurred shape of the Doppler effect between 20 kHz
and 20.5 kHz, drowned in the noise and sub-harmonics. Hence, the next critical step is to mitigate
the interference and noise so as to locate the signal of interest.

Since the built-in speaker and microphone are omnidirectional, signals received by the micro-
phone include not only desired reflection from the target, but also noise. Two major sources of
noises are identified: direct transmission noise and background reflection noise, where the former
one is the original audio played by the speaker while the late one is caused by the static reflector
in the environment. Both of them overlap and interfere with the Doppler effect in time domain
which greatly distort the quality of Doppler effect spectrogram. To minimize the impact of interfer-
ence, we leverage the fact that both direct transmission and background reflection do not generate
Doppler shift as we assume (1) the speaker and microphone remain static, thus there is no relevant
movement between them; (2) there is no moving object in the environment, so the environment is
considered to be static. These assumptions guarantee that the aforementioned two types of noises
do not change over time, allowing us to safely subtract them from the spectrogram of received
signal.

As such, in our Signal Processing Module, we propose a two-stage scheme to eliminate all the
existing interference and noise, in order to acquire a clear Doppler shift spectrogram.

— Stage 1 As discussed, the Doppler effect can only exist in the range of 20±0.5kHz, consider-
ing the human walking speed. Hence, we pass the received signal to a high-pass Butterworth
filter with a cut-off frequency of 19 kHz to obtain the spectrogram that is only located within
19.5 kHz∼20.5 kHz.

— Stage 2 This stage tries to remove the noise from direct transmission and background. Since
these two types of noise stay static over time, their spectrograms would be static (i.e., no
Doppler effect). This allows us to eliminate interference by subtracting the spectrograms
of noise from that of received signals. To acquire the background noise, we put the
speaker in an empty room to generate the ultrasonic signal, where there is no moving
object in front. The microphone will record the background noises that are reflected from
different directions, which will be stored in EchoSensor for the use of subtraction. That
is, EchoSensor eliminates the power from these static reflectors by simply subtracting the
output of the FFT in background noise from the FFT of reflected signals. This spectral
subtraction method can eliminate all interference/noise from the static reflector in the
environment. Theoretically, the direct transmission noise can also be subtracted in this
process. However, the built-in speakers in smart home devices are not designed to generate
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Fig. 6. The resulted spectrogram after applying two-stage cancellation.

such a high-frequency signal, which will cause the frequency of emitted ultrasonic waves
to fluctuate slightly over time and thus cannot be eliminated by spectral subtraction. Such
a phenomenon has been verified in our extensive experiments, where we have consistently
observed that the frequency generated by the speaker fluctuates from 19.96 kHz to 20.04 kHz.
Thus, we can set the received signal energy values between 19.95 kHz and 20.05 kHz to
zeros for safely removing all the direct transmission noise without impacting the Doppler
effect.

Figure 6 shows the resulted spectrogram after applying our two-stage scheme to Figure 5. We
can see the clear waveform of Doppler effect after removing all interference/noise. The waveform
of the Doppler effect varies over time, representing the human is moving because it has different
instantaneous speeds at different moments.

5.4 Walking Detection

After getting the clear Doppler effect waveform, we need to determine the starting point of hu-
man walking so as to identify a person’s gait. This step is important as accurately detecting the
walking activity can also ensure that EchoSensor is initiated only when a person is detected to be
walking. We now discuss how we can detect walking activity using acoustic data. Although the
direct transmission and background noise are eliminated in Section 5.3, there may still exist some
underlying interference. We keep track of such noise level threshold as Nt , which is initialized by
calculating the average energy level between 19.5 kHz∼20.5 kHz at time t0, the time after initiating
the speaker for 0.5 seconds. The reason for choosing 19.5 kHz∼20.5 kHz is that the Doppler effect
only locates within this range. Nt is updated by Exponential Moving Average algorithm [14] in
silent time period, i.e.,

Nt = (1 − α )Nt−1 + αEt , (2)

where Et is the current environment noise level (i.e., averaged energy level between 19.5 kHz∼20.5
kHz) at time slice t , Nt−1 is the noise level threshold at time slice t − 1, and α is set to 0.1 according
to prior work on detecting the start of walking using Wi-Fi signals [41]. We have observed there is
still some impulse noise in the spectrogram. To avoid the misunderstanding of the impulse noise as
the beginning of the Doppler signal, we set the detecting threshold value as three times the noise
level. Such a threshold value is set up based on our observation that it is higher than any impulse
noise we have observed and is also beyond the energy level of the Doppler signal. The Doppler
signal caused by human motion is detected when the energy level between 19.5 kHz∼20.5 kHz is
above the detecting threshold value.
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Fig. 7. Upper contour of the marked spectrogram.

5.5 Gait Cycle Time Estimation

We next try to separate the spectrogram of Doppler effect into a set of two-gait samples. The
gait cycle time, defined as the time duration between two consecutive events when the right heel
touches the ground, can be roughly estimated by visual inspection on the spectrogram of Figure 6.
We elaborate our design of an estimation strategy that can automatically calculate the gait cycle
time.

Our estimation is based on the upper contour from the leg reflection. As a person walks to-
ward the speaker, the generated Doppler effect will be within fmin ∼ fmax, i.e., 20 kHz∼20.5 kHz.
Likewise, when this person walks away from the speaker, fmin and fmax will be 19.5 kHz and
20 kHz, respectively. To identify each point in the leg upper contour, we define a function P ( f , t )
as follows:

P ( f , t ) =

∑f

fmin
F ( f , t )

∑fmax

fmin
F ( f , t )

, (3)

where F ( f , t ) represents the Doppler effect energy on the frequency f at a certain time t on

the spectrogram,
∑f

fmin
F ( f , t ) represents the cumulative energy from fmin to a frequency f , and∑fmax

fmin
F ( f , t ) represents the total cumulative energy of the Doppler signal at time t . Hence, P ( f , t )

represents the ratio of cumulative energy that is lower than frequency f over the total Doppler
effect energy at time t . An appropriate value of f at time t in Doppler effect spectrogram needs
to be obtained so as to identify a point in the upper contour. We set the threshold value of P ( f , t )
as 95% to derive the frequency f , following the suggestion in previous work [39] which explored
human movement model using Doppler radar signal.

Human walking involves an acceleration phase and a uniform speed phase. To get a steady
walking, we should remove the acceleration phase while keeping the uniform speed phase as the
sample. That is, we remove the first two-gait cycle of a walking sample, which represents the start
of walking. As a result, we obtain the upper contour in Figure 7 shown as the white curve, by
applying the aforementioned method to the spectrogram in Figure 6. It is clearly observed that
our method tracks the variation of leg speed during each walking period. We continue to process
the leg contour curve by subtracting the frequency on the curve with the averaged frequency over
all points. The resulted new curve is then passed to a low-pass filter with the cut-off frequency of
6 Hz to get a smooth curve. The valleys represent the lowest leg speed of a gait cycle, indicating
a heel touches the ground, and the gait cycle time is the time duration between two consecutive
touches on the ground of the right heel.
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Fig. 8. Autocorrelation of the leg contour curve.

However, since FFT may cause frequency leakage, some noise power will render the valley
offset on the spectrogram. This may lead to some errors in the estimated gait cycle time, as the
time corresponding to the valley does not necessarily represent the beginning of a gait cycle. To
minimize the adverse impact of frequency leakage, we use the autocorrelation of the leg contour
curve to robustly estimate gait cycle time, which is calculated by

R (τ ) =
∑

t

(F (t ) − μ ) (F (t − τ ) − μ ), (4)

where μ is the averaged frequency of the entire leg contour, F (t ) is the frequency of leg contour at
time t , and τ represents the time shift. The autocorrelation is taken over a period of steady walking,
which means that we take the autocorrelation on the smooth curve obtained after the processing
of the low-pass filter. Through autocorrelation, we can obtain a better estimation of the gait cycle
time than directly searching for valleys on the leg contour curve. Each peak in the autocorrelation
function indicates that the contour curve is similar to its original version when shifting for a time
period of τ . A gait cycle contains two footsteps where the leg speed changes twice, thus the leg
contours are similar when shifting L/2, where L is the gait cycle time. Figure 8 shows the contour
curve after autocorrelation, where the first peak appears at the point τ = 0.62 seconds. Thus, the
estimated gait cycle time L = 2τ is 1.24 seconds. A gait cycle is also called as two-gait sample or
instance in the following of this article.

5.6 Feature Extraction

Fine-grained feature extraction is a critical step in EchoSensor to capture the unique biometric
information of each individual. In the denoised spectrogram (Figure 6), we extract four types of
features related to the gait pattern.

The first feature is the cepstral coefficient vector [29], which takes into account of the normalized
energy over the whole frequency band. To reduce the inclusion of noise, we consider the area
below the leg contour curve and above the frequency line of 20.05 kHz in Figure 7, since the
massive amount of energy above the leg contour is mostly incurred by frequency leakage. With
the measured gait cycle time (in Section 5.5), the Doppler signal in this area will be cut into a
set of small pieces, each of a two-gait sample length covering the peak stride and mid stride that
alternately appear [13]. Each two-gait sample h[n] can be represented as follows [5]:

h[n] = u[n] ⊗ v[n], (5)

where n represents a specific point on the discrete signal, u[n] represents the pure Doppler signal
generated by human motion, and v[n] represents the vocal tract information which models the
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source of most interference. We apply the FFT to a two-gait sample as follows:

H
(
e jω

)
= U

(
e jω

)
V

(
e jω

)
, (6)

where ω represents the angular frequency of the signal, H (e jω ),U (e jω ), andV (e jω ) represent the
Fourier transformation of h[n], u[n], and v[n], respectively. Then, a power spectrum is calculated
by entry-wise multiplication of the FFT coefficients and conjugates. A log operator is applied to
the power spectrum to build a log power spectrum, i.e.,
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which shows that the power spectrum of Doppler signal and vocal tract information are linearly
added together in the log power spectrum. We can separate the Doppler signal from the vocal tract
information through Inverse FFT (IFFT):

ch[n] = cu [n] + cv [n]. (8)

As we only consider the real cepstrum, taking IFFT to log power spectrum is equivalent to
performing FFT. Hence, the cepstrum can be viewed as the frequency decomposition of the log
power spectrum. The left side is the low-frequency component, representing the frequency de-
composition of the log power spectrum envelope, including the biometric information. The right
side consists of the high-frequency components which represent the frequency decomposition
of the log power spectrum details for the vocal tract information. Therefore, in Equation (8), n
represents a specific point on the cepstrum, ch[n] represents the cepstrum of the received signal,
cu [n] is the left side of the cepstrum coming from the Doppler signal, and cv [n] is the right
side of the cepstrum coming from vocal tract information. We pick up the top 100 points on the
cepstrum’s left side to form a cepstral coefficient vector, which can describe the energy change of
Doppler shift in each two-gait sample.

The second feature is the spectrogram signature [41]. For each two-gait sample, we apply the
128 points FFT where the length of the Hamming window is equal to that of the respective two-gait
sample. As a result, a 128 point FFT sequence will be built for each two-gait sample. The amplitude
of each point represents the energy level on a specific frequency. We continue to normalize the
energy of each FFT sequence into the same scale (i.e., between 0 and 1). After normalization, each
sample is used to calculate the normalized energy by deriving the mean magnitudes of every five
adjacent FFT points. This will result in a total of 124 energy points, among which we drop the last
three and select 60 points with the interval of one to serve as the spectrogram signature of each
sample.

The third feature is the ratio curve between the leg and torso speed curves. The leg and torso
speed curves can be respectively calculated by using the frequency contours of the leg and the torso.
Notably, the leg frequency, as discussed before, represents the Doppler shift frequency caused by
leg movement, which quantifies the moving speed of the leg in each two-gait cycle. The torso
frequency contour can be obtained from Equation (3). That is, we set the threshold value of P ( f , t )
as 50% to derive the frequency [39], allowing us to get torso frequency of each two-gait sample.
After getting the leg and torso frequency curves, we can apply Equation (1) to get the leg speed
curve and torso speed curve, respectively, which together can characterize the motion of limbs
during walking. Instead of directly using the leg speed curve and torso speed curve as features, we
calculate the ratio values between each speed value on the leg speed curve and that on the torso
speed curve, to get the ratio curve. Since the torso and leg are likely in the same direction even if
a person changes walking directions, such a ratio curve will be relatively robust to the direction
change. We save the values on this ratio curve into a fixed length vector to serve as our third
feature.
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The gait-cycle time, which quantifies the duration of a gait cycle, will be used as the fourth

feature.
In the end, we obtain four categories of features from each two-gait cycle to represent an individ-

ual’s unique gait pattern. We would like to note that the specific features of leg speed, step length,
cadence, step width, angle, and gait phases are not directly extracted. However, these factors have
significant effects on the Doppler signal. For example, the leg speed and step length directly affect
the shape of the contours, and cadence impacts the length of contours. The step width and step
angle affect the energy distribution of the Doppler signal, thereby signifying the contour pattern.
In addition, the two-step period contains the periodic change in the gait phases. Therefore, we can
conclude that the extracted features contain leg speed, step length, cadence, step width, angle, and
gait phases information.

5.7 Recognition

Based on the features extracted from aforementioned steps, we are ready to use the detected gait
patterns to serve the purpose of intrusion detection and individual recognition. Essentially, our
system is based on gait recognition to distinguish between the gait patterns of intruders and family
members.

The received acoustic signal will be processed by EchoSensor at each module with detailed steps
as aforementioned to extract the features. Here, the Principal Component Analysis (PCA) [43]
is applied to help reduce the dimensionality of the features by extracting the principal components
and reducing the dimension of features from 222 toN . These features will be trained in the Machine

Learning Classifier module using the Support Vector Machine (SVM) to acquire a unique model
for each family member, so that any two-gait instance can be classified into two classes of self-gait
and non-self-gait. With reduced dimensions, SVM can act with shorter training time and higher
accuracy, compared with using the original data. We propose to use the LibSVM tool [3] with the
Radial Basis Function (RBF) kernel in the training phase. The optimal values of parameters n
and д for the RBF kernel are selected through grid search, which takes less than 10s . It is worth
noting that, to maintain the robustness of EchoSensor, we can enable it to periodically collect
the two-gait instances of each family member so as to capture a rich set of gait patterns. Finally,
the SVM calculates the fitness probability of a newly appeared two-gait instance belonging to the
enrolled family members or not.

6 PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the performance of EchoSensor in the real
home environments.

6.1 Experiments

EchoSensor is implemented on a Huawei P20 smartphone with Android 8.1 and a Bluetooth
speaker Bose soundlink Revolve. The smartphone works as the tone generator and controls the
Bose soundlink Revolve speaker via Bluetooth connection to emit the ultrasonic signals at 20 kHz.1

The built-in microphone on smartphone is used as the recorder. We set the sampling frequency as
44.1 kHz according to the Nyquist sampling theorem. The recorded Doppler data is sent to a laptop
for further processing, with Matlab employed as the signal processing and machine learning tools.

Data Collection. Our experiments were conducted in 10 real family houses with a total of
24 participants. The number of family members in each household ranges from 1 to 4. There are

1The sound pressure at 1 m from the speakers will reduce to 36 dB, which will not cause side effects such as headache,

dizziness, and pressure or pain in the ears.
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Fig. 9. IDR and TFR at different

distances in home 1.

Fig. 10. IDR and TFR at different

distances in home 2.

Fig. 11. IDR and TFR at different

distances in home 3.

10 females and 14 males, with their ages ranging from 20 to 50. The experiments were approved
by our University’s IRB. Initially, the background noise was recorded at each house with no
person moving. Each participant walked in his house toward and away from the speaker (up
to 7 meters away) at his natural pace, repeatedly 40 times. In each house, two strangers were
introduced as the intruders, each walking 20 round trips. Notably, each participant walked in
their natural manner, not necessarily walking along the straight line to the speaker. The reflected
Doppler signal was recorded by the smartphone and processed on the laptop, with 200 two-gait
instances collected from each participant.

Evaluation Metrics. To measure the sensing capability of EchoSensor in detecting intruders and
family members, we use two stringent and fine-grained metrics of gait instances identification
accuracy: IDR and TFR. Specifically, IDR represents the ratio of a true intruder’s two-gait instances
detected over his total ones. TFR represents the ratio of all detected true family members’ two-gait
instances over all detected ones claimed to belong to family members. Notably, in the real-world
deployment, a threshold (e.g., 50% or more) for the IDR can be set to safely trigger the intrusion
alarm, as will be elaborated in Section 6.3.

6.2 Operational Distance

We first conduct experiments to identify the best operational distance of EchoSensor. For our
collected data, we roughly truncate the two-gait instances at seven distance ranges, i.e., (0, 1m),
(1m, 2m), . . . , (6m, 7m). For each family member, we train seven SVM classifiers corresponding
to each distance range. Figures 9–11 show the IDR and TFR at different distance ranges in three
households, where 2m represents the distance range of (1m, 2m) and the same for others. We
can see that EchoSensor achieves the best gait instance detection accuracy at the distance range
of 1 to 5 meters, with IDR and TFR both more than 92%. When the distance is more than 5
meters, both IDR and TFR quickly drop, with only 50% accuracy at 7 meters. The reason is that
the energy of the reflected Doppler signals is too weak to be detected if the participant is far
away from the speaker. Interestingly, we also observe that both IDR and TFR perform worse
within 1 meter. This is due to the fact that within a close distance, most signals are reflected
from the feet movement, hindering the microphone from capturing sufficient gait patterns for
identification.

In summary, we can conclude that the appropriate operational distance for EchoSensor ranges
from 1 to 5 meters for the accurate gait recognition, which is used as the basis to perform the
following set of experiments. Figure 12 also affirms our conclusion, which exhibits the averaged
IDR and TFR values for all 10 families. We believe such an operational distance is sufficient for
EchoSensor to work in the smart home environments, where the audio devices typically are placed
in the center of a room. Moreover, there may be multiple audio devices in each home, placed at
different positions or rooms, which can all install EchoSensor and work together to cover the
house’s majority area.
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Fig. 12. Averaged IDR and

TFR at different distances.
Fig. 13. Averaged IDR and TFR in all 10

families.

Fig. 14. Alarm accuracy under differ-

ent numbers of samples and thresh-

olds.

6.3 Overall Performance

Having identified the appropriate operational distances, we next present the performance of Echo-
Sensor in all 10 households. In each household, we use each family member’s data between 1 to 5
meters to train his SVM classifier. All family members’ data will be considered as positive samples.
Meanwhile, we take another three participants who are neither family members nor intruders as
the negative samples in each SVM classifier’s training. For recognition, we set a detection thresh-
old as 0.5, which means that EchoSensor classifies the gait sample as a family member when the
corresponding fitness probability is higher than 0.5; as an intruder, otherwise. The SVM classifier
is trained with 5-fold cross-validation, where one-fifth of the family members’ two-gait instances
are used for testing and the remaining ones are used for training.

Figure 13 illustrates the IDR and TFR of EchoSensor in each home. The maximum IDR and
TFR values are achieved at home 5, with 93.5% and 92.9%, respectively. The minimum IDR and
TFR are 91.5% and 90.7%, respectively, at home 8. The averaged IDR and TFR values across all 10
families are 92.7% and 91.9%, respectively, demonstrating that EchoSensor can detect the subtle
gait patterns of both intruders and family members with high accuracy.

Notably, the IDR and TFR here represent the ratios of the detected two-gait instances to validate

the robustness of our system. In the real-world deployment, a lower threshold for IDR (say 50%) is

sufficient to trigger the intrusion detection alarm safely. To claim an intruder, we can set an alarm
threshold, which specifies the percentage of two-gait samples detected that is unrecognized. We
then define an alarm accuracy as the possibility of one individual truly identified as an intruder
given a set of his two gait samples. Figure 14 presents the alarm accuracy with various number
of detected two-gait samples when setting the alarm threshold to be 50% and 70%. We observe
that alarm accuracy reaches 98% and 94% with the thresholds of 50% and 70%, respectively, with
5 two-gait samples. This result demonstrates that 5 two-gait samples are sufficient to trigger an
alarm. When using 15 two-gait samples, both values of alarm accuracy increase to 100%, given
alarm threshold values of 50% and 70%, respectively. Despite a fully reliable detection, it may not
be necessary to use 15 two-gait samples for the practical concern of space limitation. We prefer to
use 5 two-gait samples to set up our intrusion detection alarm system in practice.

6.4 Impact of Extracted Features

To signify the effectiveness of four features, we conduct another set of experiments, each including
three features, with Figure 15 showing the respective performance. When all four features are
included, EchoSensor achieves the highest values of IDR and TFR with 93% and 91.9%, respectively.
When one of the cepstral vector, spectrogram signature, leg contour, and torso speed and gait cycle
time pair is excluded, the resulted IDRs are 85.5%, 86.5%, 88%, and 80.5%, respectively, and the TFRs
decrease to 84.7%, 85.7%, 87.3%, and 79.5%, respectively. We observe the leg contour has relatively
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Fig. 15. Different features. Fig. 16. Different actions.

slight impact on the detection accuracy. However, it is important to help us determine gait-cycle
time as discussed in Section 5.5.

6.5 Impact of Person Actions

We then consider some unusual behaviors of an intruder when he invades a house. Four differ-
ent actions are considered: (1) walking at normal pace; (2) keeping arms stable to avoid touching
something accidentally; (3) carrying a book stolen from the house; (4) randomly walking in front
of the Echosensor to look for objects in the victim’s home. We conducted our experiments in three
homes, where two intruders walked with four different actions. Figure 16 shows the averaged IDRs
for each action in each home. It is seen that EchoSensor can still achieve more than 90% of IDRs un-
der two unusual actions (no arm swing and carrying a book) in all three homes. This demonstrates
that EchoSensor is robust to different actions of an intruder: the gait pattern may be impacted by
different actions, but it is still distinctive from family members and thus can be detected. When
the intruder is walking in the house, the EchoSensor can still achieve more than 80% of IDRs in all
three homes, leading to a higher alarm accuracy as we have discussed in Section 6.3.

6.6 Impact of Mimicry and Saturate Attack

For mimicry attack, we consider the scenarios where an intruder may be familiar with the family
members and try to mimic their walking patterns to obfuscate the system. Four participants were
asked to try their best to walk in the same way, such as walking at the same speed and swinging
their arms in the same amplitude. We select three participants to be the family members and the
remaining one to be the intruder. Figure 17 shows the results of IDRs and TFRs under four different
combinations, treated as four families. We obverse that the mimicry attack has a negligible impact
on the intrusion detection accuracy of EchoSensor system. This demonstrates that EchoSensor is
able to capture rich fine-grained information in gait patterns and is robust to mimicry attacks.

For saturate attack, we also choose one participant as the intruder and the other three as family
members, with the total of four combinations, considering as four families. In each family, the in-
truder carries a speaker playing 20 khz ultrasonic sound to obfuscate the system. Figure 18 shows
the results of IDRs and TFRs in four families under the saturate attack. It is observed that Echo-
Sensor can still maintain the high IDRs and TFRs, demonstrating its robustness to saturate attack.

6.7 Impact of Device Placement

As the devices may be deployed at different places, such as on the floor, on a coffee table, or on a
chair, we now examine the impact of device placement, especially from the perspective of height,
on the performance of EchoSensor. Figure 19 shows the results of IDRs and TFRs at four different
heights (0 m, 0.2 m, 0.5 m, and 1 m). With a low height of 0 m and 0.2 m, the IDR and TFR can
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Fig. 17. Mimicry attack. Fig. 18. Saturate attack. Fig. 19. Different heights.

Fig. 20. Different devices. Fig. 21. Different angles. Fig. 22. Different speeds.

be higher than 90%. When the height grows to 0.5 m and 1 m, the IDR drops to 88% and 82%,
respectively, and the TFR drops to 87% and 80.8%, respectively. Notably, even when the IDR and
TFR at 1 m reduce to 80%, EchoSensor can still perform well in triggering intrusion alarm as we
have discussed in the end of Section 6.3, by setting the threshold of intrusion detection alarm as
70% or 80%.

6.8 Impact of Different Devices

We next evaluate the performance of EchoSensor implemented on different devices. Three differ-
ent smartphones and Bluetooth speakers are used to implement our experiments, where we pair
them as the Huawei P20 and Bose soundlink (device pair 1), Galaxy s9 plus and Amazon Echo
(device pair 2), iPhone 8 and Apple Homepod (device pair 3). Four participants are involved in this
experiment, with two treated as the family members and two as the intruders. For each participant,
200 two-gait samples are collected from each implementation. As shown in Figure 20, EchoSensor
achieves averaged IDRs of 92.5%, 91.5%, 92% and TFRs of 91.9%, 90.7%, 90.4%, respectively, for im-
plementations on three devices. Clearly, despite slight differences in the IDRs, EchoSensor exhibits
good performance regardless of the types of speakers.

6.9 Impact of Walking Direction and Speed

We exam the performance of EchoSensor when the walking direction and the orientation of mi-
crophone have a certain angle. Figure 21 shows the results of IDRs and TFRs when such an angle
varies from 0, 30, 60, to 90 degrees. Both IDR and TFR degrade with the growth of angles. When
the angle increases to 60 degrees, they drop to 84% and 79%, respectively. When the angle increases
to 90 degrees, they drop to 71% and 69%, respectively. The reason is that a larger angle will reduce
the Doppler reflection, which leads to fewer Doppler signals captured by the microphone and thus
lower detection accuracy. However, the leg and arm movement still could be extracted to a certain
extent, making the intruder’s patterns distinctive from these of the family members.

We further evaluate EchoSensor when intruders walk at different speeds. In Figure 22, compared
with normal speed, both IDR and TFR increase (from 91.5% to 94%, and from 90.7% to 93%) when
the intruders walk slowly. The reason is that high-quality spectrogram can be obtained from slow
walking, which allows EchoSensor to extract more clear patterns. In contrast, when walking fast,
the performance of IDR and TFR drop to 82% and 82.1%, respectively.
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Fig. 23. Different noise. Fig. 24. Different time. Fig. 25. EchoSensor v.s Baselines.

6.10 Impact of Noises

We next evaluate the robustness of EchoSensor when there exists a certain level of noise in smart
home. Theoretically, the low-frequency noises at home, such as music playing and people talking,
can be simply removed by low-pass filtering. However, due to the frequency leakage [16], these
audible noises may impact the performance of EchoSensor. Hence, we conducted the following
experiment: the two-gait samples of family members were recorded in a silent environment, while
an intruder’s two-gait samples were recorded in three scenarios: silent, music playing, and people
talking with loud footstep noise. In noisy environments, both the IDRs and TFRs drop below 85%,
as shown in Figure 23, because the frequency leakage of such sounds significantly blurs the spec-
trogram. However, they remain higher than 90% when we choose 5 two-gait samples as a group,
which demonstrates our system is reliable in a noisy environment.

6.11 Impact at Different Time

We then evaluate the time consistency of the gait pattern regarding our EchoSensor’s performance.
We collect 100 gait samples from one user (family member) in February 2022 to build the EchoSen-
sor classifier. His gait samples are then collected in April and July for testing, while one user from
dataset described in Section 6.1 is considered as the intruder. Due to changes in the weather, the
clothes of that user change at different times. Figure 24 shows the performance at each month. In
each month, the IDR is 92%, 90%, and 92%, and the TFR is 91.33%, 88.9%, and 91.13%. The stable
result shows the gait pattern is resilient to time and clothing changes.

6.12 Comparison with Other Approaches

The previous gait identification system was not aimed at intrusion detection, and their system
working flow differs from ours. Specifically, the existing acoustic-based gait detection solution
[13, 42, 50] did not extract the fine-grained features for identification. Instead, they relied on
professional devices and neural network models to compute the features by using the whole
spectrogram as input. Reference [45] implemented with the COTS device; however, they do
not consider the reflection in the different environments and do not contain the interference
cancellation part. We call the [13, 42, 50] as baseline 1 while [45] as baseline 2. We implement
their approaches on the same devices as that of EchoSensor without using professional devices.
We used their original setting and trained the gait identification system to compare with
EchoSensor. From Figure 25, we can observe that EchoSensor can achieve the averaged IDR and
TFR of 92.7% and 91.9%, while baseline 1 and baseline 2 are only of 62.2% and 60.5%, and of
78% and 82%, respectively. The major performance dropping for the two baselines is due to the
missing of interference Cancellation process or the fine-grained feature extraction process. This
experiment demonstrates the importance and necessity of fine-grained signal processing and
feature extraction developed in EchoSensor for accurate intrusion detection.

7 DISCUSSION

In this section, we conduct security analysis and discuss the potential improvement of EchoSensor.
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7.1 Security Analysis

We analyze three types of attacks: mimicry attack, saturate attack, and replay attack.

Mimcry attack. This attack requires the intruder to imitate the gait pattern of the victim, for
example, the same speed and the same behavior when walking However, it is extremely difficult
to accurately imitate the family members’ gait pattern in practice. Our experiment in Section 6.6
validated that EchoSensor is robust to this attack.

Saturate attack. The intruder is assumed to know the principle of EchoSensor and carries a device
playing the high-energy ultrasonic signal to saturate the microphone when entering the house,
making her gait signal be drown in noise. EachoSensor can capture the mixed signal, including both
the reflected Doppler signals from the intruder’s gait and the playing ultrasonic signal. However,
this playing ultrasonic signal will be treated as the noise for removal in EchoSensor, leaving only
intruder’s Doppler signal for recognition. Our experiment in Section 6.6 validated that saturate
attack does not work in EchoSensor.

Replay attack. The intruder has the chance to record the Doppler gait signal secretly from victims
without being noticed. Our EchoSensor is vulnerable to this type of attack since the recorded signal
has similar characteristics of victim’s Doppler shift signal, which can fool the EchoSensor. But
notably, when an intruder enters into the house to replay the audio, EchoSensor may capture his
gait patterns and trigger an alarm before he performs replay attack.

7.2 Limitations and Discussions

EchoSensor provides a proof of concept to successfully demonstrate the feasibility of employing
the existing smart home devices to conduct acoustic sensing for gait patterns to serve the purpose
of intrusion detection. Yet, this system has some limitations to be improved in our future work.

First, EchoSensor’s IDR and TFR are sensitive to the change in walking direction and speed,
where the captured Doppler signals will change accordingly. Specifically, when the walking direc-
tion shifts over 60 degrees, the IDR and TFR of EchoSensor will significantly degrade. The arbitrate
walking direction indeed limits EchoSensor’s practical deployment based on the current design.
The more robust solutions are expected to make EchoSensor more practical. To overcome such a
limitation, two possible solutions can be explored. First, we can enrich the training set to include
data samples from different directions and cover all possible scenarios. Second, when conducting
the detection, we can treat the multiple consecutive gait samples as a group rather than a single
gait sample for identification. It is expected that a group of gait samples collected from a user
walking in an irregular trajectory will be collected in different directions. Although gait samples
at a high angle cannot be recognized properly, those with a low angle can still be recognized. We
can set a threshold when the number of recognized gait samples belonging to a family member
exceeds the threshold. We will treat the whole group of samples to be from the same family mem-
ber. Notably, a small threshold is sufficient for accurate detection. In addition, we can also leverage
multiple audio devices to cover all possible angles in each room. This is feasible in current smart
home environments, given there typically exist multiple voice devices.

Second, when the device’s height is more than 0.5 meters, most of the Doppler signals will be
reflected from the arm swing, which drowns the Doppler signals reflecting from the gaits. Under
this scenario, new signal processing solutions that can remove the strong Doppler signals from
the arm swing while extracting the weak Doppler signals from the gaits are needed.

Third, the detection range of EchoSensor can be up to 5 meters, which works in general house
environments. Notably, the intrusion mostly happens at the entry door or window, so our Echo-
Sensor can be deployed at a specific location, which is no more than 5m from the entry door or
windows. Hence, 5m detection range should be sufficient for EchoSensor’s practical deployment
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in most houses. Definitely, the longer detection distance can further enhance our EchoSensor’s ca-
pability. To further extend its applications into the building with larger rooms or halls, new signal
processing techniques have to be developed to remove the interference from weak Doppler signals,
and more fine-grained features need to be extracted to mine the useful information.

Fourth, if an intruder’s moving speed is less than 0.33 m/s, EchoSensor cannot detect him. To
cover the low movement case, we can set a more narrow range to mitigate the direct transmission
noises. In fact, our empirical studies have exhibited that setting a narrow range from 19.99 kHz
and 20.01 kHz is sufficient to remove the majority of noises. Corresponding to this narrow range,
if an intruder’s moving speed is above 0.08 m/s, EchoSensor can always detect him with high
performance.

In the end, the current EchoSensor only works for detecting one person. When multiple people
appear, their Doppler signals will mix together, making their gaits patterns not distinguishable.
In our future work, we plan to employ multiple devices or multiple tone frequencies to enrich the
Doppler signals to include much richer gait information that can be distinguished for individual
recognition, in the appearance of multiple people at the same time. Another working direction is
to implement a powerful beamforming algorithm so that we can directly separate the signal from
different targets by the direction difference. Microphone array can also be utilized to enhance the
received signals of interests and allow us to develop more powerful signal processing technology
for us. In addition, deep learning approaches will also be explored to boost classifier’s recognition
capability in our future work. All these potential technologies will be explored in our future
works.

8 CONCLUSION

In this article, we proposed a novel intrusion detection system, called EchoSensor, that only relies
on the speaker and microphone, ubiquitously available in smart home audio devices for individual
gait recognition. Through the design of a two-stage interference cancellation scheme, EchoSensor
can acquire the pure signals of Doppler shift, for the mining of enclosed gait information. New
signal processing techniques have been developed and applied to the Doppler effect spectrogram
to perform the fine-grained analysis of gait patterns by detecting the starting point of walking,
estimating gait cycle time, and extracting effective features so that each individual’s unique gait
patterns can be distinguished. With the extracted fine-grained features, EchoSensor employs ma-
chine learning classifiers for conducting individual recognition tasks. Implemented on existing
smart home devices without extra hardware deployment or modification, EchoSensor is economi-
cal compared with the state-of-the-art home security systems. We deployed our EchoSensor system
in the real home environment and conducted extensive experiments to evaluate its performance
from different perspectives. Experimental results demonstrated that EchoSensor, economical, and
lightweight, can achieve competitive intrusion detection accuracy in smart home environment.
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